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A simple reaction kinetic scheme of two oscillating components was found, whose analog solu­
tion shows a stable limit cycle separated from a stable focus by an unstable limit cycle . The scheme 
leads to trajectories which alternate between the types of limit cycles and stable spirals on changing 
the rate constants. Modifications of the basic scheme, which consists of five consecutive reactions 
with two accelerating parallel steps, were studied and its chemical realization was proposed. 

In an analysis of the possibilities of oscillating schemes in the case of bimolecular reaction me­
chanisms, Tyson 1 and Hanusse2 arrived at the conclusion that the characteristic equations 
in neighbourhood of the singular point of the differential kinetic equations must have the real 
part of one of their roots positive, i.e. , the solution must be in the neighbourhood of the singular 
point unstable if a " realistic" limit cycle is to be obtained . If the real parts of all roots are negative 
they consider the formation of a limit cycle in chemical systems as unrealistic from the kinetic 
point of view. The published theoretical studies of various oscillating schemes3 

- 6 are based 
on this condition of unstability (although it is only sufficient and not necessary). However, this 
condition apriori restricts the possibilities of the oscillating kinetic schemes. 

The object of the present work is to propose a bimolecular chemical system, 
which is very realistic from the kinetic point of view, involves only two oscillating 
intermediate products, has in the neighbourhood of the singular point a stable 
solution, and in spite of this leads to limit cycles. ' 

THEORETICAL . 
We shall consider a kinetic scheme in which a substance Q is reduced by a reductant Z 
gradually through a system of consecutive concurrent reactions to products X, A, 
Y, C, and P. At the same time, the substances Q with A and A with C react in parallel 
reactions under regeneration of the intermediate products X and Y: 

z z I z z z 
Q~X~A~Y~C---+P. 

1 2 I 3 t 4 I 5 
(I) 

6 
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We assume that all steps are bimolecular. The corresponding system of differential 
kinetic equations is as follows: 

d[Q]/dt = -kl[Q][Z] - k7[Q][A] 

d[X]/dt = k1[Q][Z] + 2k7[Q] [A] - k2[X][Z] 

d[A]/dt = -k7[Q][A] + k2[X][Z] - k3[A][Z] - k6[A][C] 

d[Y]/dt = k3[ A] [Z] + 2k6[ A] [C] - k4[Y] [Z] 

d[C]/dt = -k6[A][C] + k4[Y][Z] - ks[C][Z] 

d[P]/dt = k5 [C] [Z] 

(fa) 

(I b) 

(Ie) 

(Id) 

(Ie) 

(If) 

As a special case, we shall assume that the steps 2 and 4 are very rapid so that sub­
stances X and Y, which are unstable intermediate products, will attain stationary 
concentrations, d[X]/dt = d[Y] /dt = O. In this way, Eqs (Ib,d) are eliminated, 
(Ic,e) much simplified, and the system will involve only two oscillating components 
A and C: 

d[A] /dt = k1[Q][Z] + k7[Q] [A] - k3[A][Z] - k6[A][C] , (2a) 

d[C]fdt = k3[A][Z] + k6[A][C] - ks[C][Z]. (2b) 

This simplified system of differential equations corresponds to the scheme 

z z z 
Q~A; A + Q~2A ; A~C; A + C~2C; C~P, 

(II) 

i.e. , the scheme of Lotka? and }'0lterra8 (steps 7, 6, 5), in which, however, the 
seemingly autocatalytic steps are realized by a system of two consecutive concurrent 
reactions with a parallel reaction that synthesizes the intermediate product from two 
neighbouring components Nand R: 

I I 
N~M ~ R. 

Moreover , the scheme is modified by noncatalytic steps (1 , 3), which secure the 
stability of the solution in the region of the singular point in accord with Tyson's 
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view! although , at variance with his statement! , they do not exclude the limit cycle 
(see Analog solution). In the original scheme of Lotka and Volterra , the limit cycle 
does not exist. 

TOPOLOGY 

The [A] - [C] trajectory has a slope d[A ]/d[C] equal to zero on the hyperbola 

(3a) 

for constant or pseudoconstant [Z] and [Q], the slope d[C]/d[ A] equal to zero 
on the hyperbola 

(3b) 

and the slope d[ A ]/d[C] = -Ion the straight line 

(3c) 

which for very small values of k1 and k3 gives a straight line passing through the 
origin of coordinates and through the singular point given by the coordinates 

(3d ,e) 

The singular point is given exactly by the intersection of(3a) and (3b) as follows: 

(3g) 

In the neighbourhood of the singular point, we set [A] = [A]o + x, [C] = [C]o + y, 

whereby Eqs (2a,b) are linearized: 

dx/dt = k7 [Q] x - k3[Z] X - k6[A]0 y - k6 [C]0 x , (4a) 

dy/dt = k3[Z] x + k6[ A]o Y + k6[C]0 X - ks[Z] y , (4b) 

and simplified with the use of (3a ,b) as 

dx/dt = -k![Q][Z] x/[A]o - k6[A]0 y, 

dy/dt = ks[Z] [C]o x/[A]o - k3[A]0[Z] y/[C]o ' 
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2138 

The characteristic equation is 

1

-(kl[Q] [Z] j [A]o + },) 
ks[Z] [C]o j[ A]o 

and its solution is 

Tockstein. Komers : 

(5a) 

). =! [Z] {_ (kl[Q] + k [A]o) + [(kl[Q] _ k 3[A]0)2 _ 4k k [C]0]1 /2}. 
1.2 2 [A]o 3 [C]o - [A]o [C]o 6 5 [Z] 

(5b) 

It is seen that the real part of these roots is always negative. If the values of k I and k3 
are very small, we obtain with the use of Eqs (3d) and (5b) 

(5c) 

ANALOGUE SOLUTION 

Trajectories 

Although the roots of the characteristic equation have their real part negative and the 
solution in the region of the singular point is hence a stable focus, analog solutions 
of the mentioned mechanism show for constant [Q] and [Z] (hence for an open sys-

[AI 

[AJ 

FIG.l 

[A]-[C] Trajectory 
The form of the trajectory and the dotted 

stable limit cycle are determined mainly 
by the slope of the dashed line (3c) cor­
responding to the slope d[A] jd[C] = -1, 
whereas the magnitude is determined by the 
distance of the singular point (open circle) 
from the origin of coordinates. The slope 
field is denoted by short abscissae. Dashed 
curves are hyperbolae corresponding to zero 
and infinite slopes. The ratio of k s[Z] j k 7 [Q] 
is larger than one, approximately equal 
to one, or smaller than one in cases a), b), 
and c), respecti~ely; [0, 0] is the starting 
point of the traje~tory. 
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tem) with suitably chosen rate constants the existence of a limit cycle (Fig. 2). The 
analog solution leads to an alternating sequence of stable foci and limit cycles at relati­
vely small changes of the rate constants (Fig. 2). It follows from the Poincare-Ben­
dixon's rule that if there is a limit cycle around a stable focus , then in the region 
within a closed trajectory of the stable limit cycle there must be also an unstable 
limit cycle9

• This was proved in our case (Fig. 3) by a choice of different initial condi­
tions within the region delimited by the stable limit cycle, where the curves either 
proceeded toward the external stable limit cycle or (with a choice in the region 
delimited by the trajectory of the unstable limit cycle) they approached in spirals 
to the stable focus. 

The results of the analog solution can be hence classified according to whether 
the trajectories of the stable and unstable limit cycles 0) are sufficiently separated 

FIG. 2 

Two Types of Trajectories in Analog Solu­
tion 

The rate constants were chosen as k 1 = 

= O·OJ, k3 = 0'1, k6 = 60, k7 = 5, ks (from 
left to right) = o· 5, 2, 6, 12, 15, 25. Open 

system, [Ql/[Q1t=o = I, [Zl/ [Zlt=o = I. 
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FIG.3 

Existence of Unstable Limit Cycle 
The rate constants were chosen as k 1 = 

= 0'01, k3 = 0'1, ks = 16, k6 = 80, k7 = 
= 10; [Ql/[Qlt=o = I, [Zl/[Zlt=o = I. The 
coordinates of the singular point are [A1o : 
: [Qlt=o = 0'2, [Clo/[Q1t=o = 0·12. The co­
ordinates of the starting points of the tra­
jectories in the region within the unstable 
limit cycle are denoted by solid circles, 
beyond this region by open circles. The co­
ordinates were chosen according to Table I. 
The unstable limit cycle is denoted by the 
dashed line, the stable one by the solid 
line . 
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(then the trajectories starting from the initial conditions beyond the region delimited 
by the unstable limit cycle wind always around the stable limit cycle), b) have a com­
mon point of contact (then the stable limit cycle, as soon as it commences, degenerates 
into the focus) , c) fuse together (then the solution is a spiral which ends in the stable 

foxus). 
Since the trajectories of the limit cycles depend on the individual rate constants, 

it is possible that the mutual position of both limit cycles can change for several 
times by the change of the rate constants, thus causing that the type of the solution 
alternates between stable limit cycles and stable foci, as already found. 

Oscillations 

The oscillation frequency is in the whole region in good agreement with the value 
determined for the neighbourhood of the singular point from the root of the charac­
teristic equation (5c): 

(5d) 

The length of the induction period decreases considerably with increasing rate 

constants k1 and k 7' whereas k6 has an opposite influence and the constants k5 
and k2 have no effect. If the concentrations of Q and Z are not constant but decrease 
with time, we obtain naturally damped oscillations of the concentrations of A and C 
together with a marked gradual exhausting of Q and Z and accumulation of the 
product P. 

Modification of the Scheme 

1) If the rate constant "2 is not so large as to enable the use of the stationary 
state principle for the substance X, then X is the third oscillating component and we 

TABLE I 

Coordinates of Starting Points of Trajectories 
o Stable limit cycle; 6 stable spiral; • singular point. 

~ [C] / [Ql,=o 

[Al/[QLo 

0'1 
0' 18 
0·2 
0·22 
0·25 
0·27 

0·05 

o 

o 

o 
o 

0· 1 0·12 

o 

o 

0·15 

6 
o 

0·2 

o 
o 
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have the system of equations (ib) , (2a,b) with the singular point (3f,g) and 

(6a) 

After linearization in the region of [A Jo, [XJo, and [CJo we obtain a characteristic 
equation of the third degree which can be written in the form 

This equation for k2 -> CI) takes the form of (Sa) . Its coefficients are all positive; 
the necessary and sufficient condition for the stability of the solution in the region 
of the singular point is given by the Hurwitz' theorem 10 in the form 

where a i denotes the coefficient at Ai . For Eq. (7a), these conditions are always ful­
filled, hence the solution is in the region of the singular point stable; nevertheless 
a limiting cycle exists in the analogue solution for suitable combinations of the rate 
constants. 

2) If we set k7 = 0 (considering k2 and k4 very large), then we have to deal with 
the scheme 

(III) 

Since Eq. (Sb) does not involve k7 ' it remains unchanged; the values of [A Jo and [CJo 
follow from (3f,g) by setting k 7 = O. The solution is again 5table around the singular 
point, however no limit cycle exists in the analog solution . 

It follows that at least two accelerating cycles of the type 

N 
[ 

M 
t 

R 
[ 

are necessary for the existence of a limit cycle of the scheme type considered. 

CHEMICAL REALIZA nON 

The chemical reason for the formation of oscillations is as follows: The " auto­
catalytic" step 6 + 4 exhausts the substance A, thus breaking both the "autocata-
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lytic" steps 7 + 2 and 6 + 4, so that it is necessary to wait until C it removed by stepS . 
This enables again the "autocatalytic" accumulation of A and thi s in turn enables 
the "autoca talytic" accumulation of C, while A is exhausted , steps 6 and 7 are stopped 
(steps 1 and 3 are slow) -and it is necessary to wait until C is exhausted by step 5, 
and so on. If C is removed too slowly by step 5, then its relatively high concent ra tion 
keeps the concentration of A low and steady and the oscillations cannot take place. 
From this point of view, the following conditions a re favourable for the form atio n 
of oscillations: 

This type of the oscillation scheme (I) can be expected mainly in the case where 
the substances Q, X, A, Y, a nd C correspond to different oxidation states of the 
mother compound which is reduced (or oxidised) by Z. In this way it is possible 
to explain the oscillating behaviour of bromate and phenol reported recently!! ' ! 2 

(as well as of a number of other organic compounds). 

APPENDIX 

The di fferential equations (la-g) were solved on a MEDA 42 TA type analog computer. For 
substance Z, its initial concentration [Z]t = o served as a norm; other substances were normali zed 
with respect to [Q]t =o, The initial concentrations of the remaining reaction components were 
set equal to zero. Further we set [Q]t = o/ [Z], = 0 = I/. The system of kinetic equations invo lves 
then IIk4 ' Ilk 6 and nk7 as constants. High values of certain rate constants were realized by'ln~ 
creasing the transfer coefficients at the integrator inputs in combination with a potentiometer. 
For an open system, we set moreover [Q] / [Q], =o = [Z] / [Z], =o = I. 
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